Code No.: 15245 S N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. V-Semester Supplementary Examinations, June-2023

Artificial Intelligence

(Common to CSE & AIML)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No	Stem of the question		M	T	00	-
1.	Formulate the PEAS description of the task environment for Automated vehicle.	an		1	CO	P(
2.	Utilize the following start node and goal node for the 8- Puzz	le	2	3	1	1,3
	Start node Goal node					
	2 8 3 1 6 4 7 5 1 2 3 8 4 7 6 5					
	Figure shows an 8-puzzle problem with the start state and the goa state. Assuming that the heuristic function $h_2(N)$ Manhattan distance calculate the heuristic value of the start state.	1				
 4. 	Construct the Three Player Game and mark the best move at the root.	2	3	2	2	1,3
5.	Differentiate Horn and definite Clause	2	2	2		1,2
.5.	Construct the statements in the form of assertions and queries in first order logic using TELL and ASK.	2		3		,2
6.	Write the syntax of first order logic with equality specified in Backus- Naur Form	2	2	3	1	,4
7.	Consider the Crypt arithmetic If KANSAS + OHIO = OREGON Then find the value of $G + R + O + S + S$?	2	3	4	1,	45
3.	What is Constraint Propagation?	•				
. 5	State the Bayes Rule with its usage.	2	1	4	1,	2
1.5	Fiven P(s m)=0.7, P(m)=1/50000,P(s)=0.01	2	2	5	1,3	
C	Calculate P(m s)	2	3	5	1,4	

	Part-B $(5\times8=40 \text{ Marks})$				
i. a)	Write a pseudo code agent programs for Model Based Agents.	. 1	1		1,2
b)	Construct the Depth first search function and examine the order in which it traverse the nodes	3	1	. 1	,3,4
	e fog ha i j				
	s t u	4	2	2	1,3,4
12. a)	What is a Wumpus world? Construct a Simple knowledge-based wumpus agent exploring the environment.	4	2	2	
b)	Given the following search tree, apply the alpha-beta pruning algorithm to it and show the search tree that would be built by this algorithm. Make sure that you show where the alpha and beta cuts are applied and which parts of the search tree are pruned as a result.	4	3	2	1,2,4
	A				
	D E F G				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
13. a	Construct the process of knowledge engineering with an appropriate example.	4	2	3	1,2
1	Differentiate between forward chaining and backward chaining in	4	3	3	1,
,	inference in FOL.	1			

Code No.: 15245 S N

4

1,4

1,3

4 3

b) Construct a solution to a planning problem in the block world

- 15. a) Define Uncertainty? Explain the Efficient representation of 4 2 5 1,2 Conditional distribution.
 - For the Belief Network given below and the corresponding probabilities, compute the following probabilities.
 - i. F(B, E, A, J, M)
 - ii. P(John calls | Burglary)

16. a) Consider the graph shown below where the numbers on the links are link costs and the numbers next to the states are heuristic estimates. Note that the arcs are undirected. Let A be the start state and G be the goal state.

Simulate A* search with a closed list on this graph.

What is Minimax algorithm? Explain with an example.

4 2 2 1,2

3

1

1,3

Code No.: 15245 S N

7.			any two of						4	3	3	1,2,4
a	1)	1.	ect the first of Everyone lo Everyone lo	ves ever	yone	2. Someo	ne loves e	everyone ed by everyone	4	3	3	-,-,
Ł	(c)	Constr	uct a PDD	for a	n Air car	rgo trans	port prob	lem involving blace.	4	3	4	1,2,4
(c)		the full joint						4	3	5	1,2,
		= 4		tooth	nache	!toot	hache	The state of the s				
		18	and the control of the second	catch	!catch	catch	!catch	sum				
		p-1-	cavity	0.108	0.012	0.072	0.008	0.200				
			!cavity	0.016	0.064	0.144	0.576	0.800				
		Signer.	sum	0.124	0.076	0.216	0.584					
			sum table	THE PERSON NAMED IN COLUMN	1.	000	20 Maria	Control of Substitution of Control				
		rest	sum_table	wing:	I.		Normalisted which are in which	the left of the le				

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

Blooms Taxonomy Level – 1	20%
Blooms Taxonomy Level – 2	35%
i) Blooms Taxonomy Level – 3 & 4	45%
